The analysis of market dynamics theories
DOI:
https://doi.org/10.21847/1728-9343.2014.1(127).23081Keywords:
efficient market, coherent market, fractal market, synergistic market, technical analysisAbstract
The main aspects of market dynamics theories are considered in the article. There are 4 markets (efficient, coherent, fractal, synergistic) that can be used for time series forecasting. It is determined that efficient market hypothesis has some theoretical and practical disagreements, coherent market hypothesis is problematic in the practical application and the precise definition of the model parameters, synergetic market hypothesis has recently started its development and has not had acceptable practical application now (but it is a perspective direction of development of the market dynamics theory), fractal market hypothesis of E. Peters is the best in theoretical perspective and practical application now. It is analyzed the fractal market instruments for investment decision making. It is determined that the fractal market instruments give the theoretical basis for predicting possibility of financial markets in short periods using the methods of technical analysis that are trend-trading based. That is why the fractal market hypothesis and its instruments are chosen as the basis for further system building of financial time series forecasting. The choice of technical analysis tools, that are trend-trading based, according to the hypothesis of fractal market, particularly Elliott wave model and application of neuro-fuzzy models for forecasting financial markets are presented and substantiated for further researches.
References
Vaga T. The Coherent Market Hypothesis / T. Vaga // Financial Analyst Journal. - 1991. - Vol. 46. - № 6. - Pр. 36-49.
Cowles A. Can Stock Market Forecasters Forecast? / A. Cowles // Econometrica. - 1933. - Vol. 1. - Issue 3. - Pр. 309-324.
Кузнецов Б. Л. Гипотеза синергетического рынка в свете феноменологической теории фазовых переходов Л. Ландау / Б. Л. Кузнецов // Вопросы экономики. - 2005. - № 8. - С. 48-53.
Cootner P. H. The Random Character of Stock Market Prices / P. H. Cootner // Operations Research. - 1966. - Vol. 14. - № 5. - Pр. 962-965.
Mandelbrot B. Robust R/S Analysis of Long Run Serial Correlation / B. Mandelbrot, M. Taqqu // Bulletin of the International Statistical Institute. - 1979. - № 48. - Book 2. - Pр. 59-104.
Петерс Э. Фрактальный анализ финансовых рынков. Применение теории хаоса в инвестициях и экономике / Э. Петерс. - М. : Интернет-трейдинг, 2004. - 304 с.
Петерс Э. Хаос и порядок на рынках капитала. Новый аналитический взгляд на циклы, цены и изменчивость рынка / Э. Петерс ; [пер. с англ.]. - М. : Мир, 2000. - 333 с.
Fama E. F. The Behavior of Stock-Market Prices / E. F. Fama // The Journal of Business. - 1965. - Vol. 38. - № 1. - Pр. 34-105.
Regnault J. Calcul des chances et philosophie de la bourse / J. Regnault. - Mallet-Bachelier [et] Castel in Paris, 1863. - 215 p.
Bachelier L. The Theory of Speculation (PhD thesis ; 1900) / Louis Bachelier ; [translated by S. Haberman and T. A. Sibett] // History of Actuarial Science. - London, 1995. - VII. - Pр. 15-78.
Kendall M. G. The Analysis of Economic Time-Series-Part I: Prices / M. G. Kendall, H. A. Bradford // Journal of the Royal Statistical Society. Series A (General). - Blackwell Publishing, 1953. - № 116 (1). - Pр. 11-34.
Alexander S. S. Price Movements in Speculative Markets: Trends or Random Walks / S. S. Alexander // Industrial Management Review. - 1961. - Vol. 2. - № 2. - Pр. 7-26.
Hurst H. E. Long term Storage Capacity of Reservoirs / H. E. Hurst // Transactions of the American Society of Civil Engineers. - 1951. - № 116. - Pр. 770-799.
Frost A. J. The Elliott Wave Principle : Key To Market Behavior / A. J. Frost, R. R. Prechter. - Introduction by Charles J. Collins, 2005. - 112 р.
Вітлінський В. В. Штучний інтелект у системи прийняття управлінських рішень / В. В. Вітлінський // Нейро-нечіткі технології моделювання в економіці : наук.-аналіт. журн. - 2012. - № 1.1. - С. 97-118.
Иманов К. Д. Fuzzy-модели оценки качества социальной системы / К. Д. Иманов, Р. М. Акперов // Нейро-нечіткі технології моделювання в економіці : наук.-аналіт. журн. - 2012. - № 1.1. - С. 142-160.
Лысенко Ю. Г. Нейросетевые и нечеткие модели бюджетирования промышленных предприятий / Ю. Г. Лысенко, Е. Е. Бизянов, А. Г. Хмелев // Нейро-нечіткі технології моделювання в економіці : наук.-аналіт. журн. - 2012. - № 1.1. - С. 171-188.
Минц А. Ю. Общие вопросы постановки задач в нейросетевом моделировании / А. Ю. Минц // Нейро-нечіткі технології моделювання в економіці : наук.-аналіт. журн. - 2012. - № 1.1. - С. 189-206.
Buckley J. J. Fuzzy statistics : regression and prediction / J. J. Buckley // Soft Computing - a Fusion of Foundations, Methodologies and Applications. - Springer-Verlag GmbH, 2005. - Vol. 9. - № 10. - Pр. 769-775.
Kuo R. J. An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network / R. J. Kuo, C. H. Chen, Y. C. Hwang // Fuzzy Sets and Systems. - 2001. - № 118. - Pр. 21-45.
Кац Д. О. Энциклопедия торговых стратегий / Д. О. Кац, Д. Л. МакКормик ; [пер. с англ.]. - М. : Альпина Паблишер, 2002. - 400 с.
Матвійчук А. В. Штучний інтелект в економіці: нейронні мережі, нечітка логіка : [монографія] / А. В. Матвійчук. - К. : КНЕУ, 2011. - 439 с.
Синергетичний підхід [Електронний ресурс] : Фрактальний аналіз фінансових ринків / Nautica : нечітка логіка. - Режим доступу : sites.google.com/site/ne4itkalogika/fraktalnij-analiz-finansovih-rinkiv/sinergeticnij-pidhid.
REFERENCES
Vaga T. (1991), The Coherent Market Hypothesis, Financial Analyst Journal, vol. 46, 6, pp. 36-49 (engl).
Cowles A. (1933), Can Stock Market Forecasters Forecast?, Econometrica, Vol. 1, Issue 3, pp. 309-324 (engl).
Kuznetsov B. L. (2005), Synergistic market hypothesis in the light of the phenomenological theory of phase transitions L. Landau, Voprosy ekonomiki, 8, pp. 48-53 (rus).
Cootner P. H. (1966), The Random Character of Stock Market Prices, Operations Research, Vol. 14, 5, pp. 962-965 (engl).
Mandelbrot B. & Taqqu M. (1979), Robust R/S Analysis of Long Run Serial Correlation, Bulletin of the International Statistical Institute, 48(Book 2), pp. 59-104 (engl).
Peters E. (2004), Fractal analysis of financial markets. Application of chaos theory to investment and economics, Moscow, 304 p. (rus).
Peters E. (2000), Chaos and order in the capital markets. New analytical view of cycles, prices and market volatility, Moscow, 333 p. (rus).
Fama E. F. (1965), The Behavior of Stock-Market Prices, The Journal of Business, Vol. 38, 1, pp. 34-105 (engl).
Regnault J. (1863), Calcul des chances et philosophie de la bourse, Mallet-Bachelier [et] Castel in Paris, 215 p. (engl).
Bachelier L. (1995), The Theory of Speculation (PhD thesis,1900), History of Actuarial Science, London, VII. pp. 15-78 (engl).
Kendall M. G. & Bradford H. A. (1953), The Analysis of Economic Time-Series-Part I: Prices, Journal of the Royal Statistical Society. Series A (General), Blackwell Publishing, 116 (1), pp. 11-34 (engl).
Alexander S. S. (1961), Price Movements in Speculative Markets: Trends or Random Walks, Industrial Management Review, Vol. 2, 2, pp. 7-26 (engl).
Hurst H. E. (1951), Long term Storage Capacity of Reservoirs, Transactions of the American Society of Civil Engineers, № 116, pp. 770-799 (engl).
Frost A. J. & Prechter R. R. (2005), The Elliott Wave Principle: Key To Market Behavior, Introduction by Charles J. Collins, 112 p. (engl).
Vitlinskyi V. V. (2012), Artificial intelligence in the systems of decision-making, Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi [Neuro-fuzzy technology of modeling in the economy], naukovo-analitychnyi zhurnal, 1.1, pp. 97-118 (ukr).
Imanov K. D. & Akperov R. M. (2012), Fuzzy model quality assessment of the social system, Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi [Neuro-fuzzy technology of modeling in the economy], naukovo-analitychnyi zhurnal, 1.1, pp. 142-160 (rus).
Lysenko Yu. G., Bizyanov Ye. Ye. & Khmelev A. G. (2012), Neuronet and fuzzy models of industrial enterprises the budgeting, Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi [Neuro-fuzzy technology of modeling in the economy], naukovo-analitychnyi zhurnal, 1.1, pp. 171-188 (rus).
Mints A. Yu. (2012), General questions statements of problems in neuronet modeling, Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi [Neuro-fuzzy technology of modeling in the economy], naukovo-analitychnyi zhurnal, 1.1, pp. 189-206 (rus).
Buckley J. J. (2005), Fuzzy statistics : regression and prediction, Soft Computing - a Fusion of Foundations, Methodologies and Applications, Springer-Verlag GmbH, Vol. 9, 10, pp. 769-775 (engl).
Kuo R. J., Chen C. H. & Hwang Y. C. (2001), An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network, Fuzzy Sets and Systems, 118, pp. 21-45 (engl).
Kats D. O., MakKormik D. L. (2002), Encyclopedia of trading strategies, Moscow, 400 p. (rus).
Matviichuk A. V. (2011), Artificial intelligence in economics: neural networks, fuzzy logic, monograph, Kyiv, 439 p. (ukr).
Nautica, fuzzy logic (2013), Synergetic approach, fractal analysis of financial markets, available at: sites.google.com/site/ne4itkalogika/fraktalnij-analiz-finansovih-rinkiv/sinergeticnij-pidhid (ukr).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Oleksii Nykytenko
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Authors bear responsibility for the accuracy of facts, quotations, numbers and names used.
2. Manuscripts are not sent back.
3. The publisher does not always agree with the authors' opinion.
4. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution Non-Commercial License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
5. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.