The analysis of market dynamics theories

Authors

DOI:

https://doi.org/10.21847/1728-9343.2014.1(127).23081

Keywords:

efficient market, coherent market, fractal market, synergistic market, technical analysis

Abstract

The main aspects of market dynamics theories are considered in the article. There are 4 markets (efficient, coherent, fractal, synergistic) that can be used for time series forecasting. It is determined that efficient market hypothesis has some theoretical and practical disagreements, coherent market hypothesis is problematic in the practical application and the precise definition of the model parameters, synergetic market hypothesis has recently started its development and has not had acceptable practical application now (but it is a perspective direction of development of the market dynamics theory), fractal market hypothesis of E. Peters is the best in theoretical perspective and practical application now. It is analyzed the fractal market instruments for investment decision making. It is determined that the fractal market instruments give the theoretical basis for predicting possibility of financial markets in short periods using the methods of technical analysis that are trend-trading based. That is why the fractal market hypothesis and its instruments are chosen as the basis for further system building of financial time series forecasting. The choice of technical analysis tools, that are trend-trading based, according to the hypothesis of fractal market, particularly Elliott wave model and application of neuro-fuzzy models for forecasting financial markets are presented and substantiated for further researches.

Author Biography

Oleksii Nykytenko, National Metallurgical Academy of Ukraine, Dnipropetrovsk

postgraduate student on the Department of Economic Computer Science

References

Vaga T. The Coherent Market Hypothesis / T. Vaga // Financial Analyst Journal. - 1991. - Vol. 46. - № 6. - Pр. 36-49.

Cowles A. Can Stock Market Forecasters Forecast? / A. Cowles // Econometrica. - 1933. - Vol. 1. - Issue 3. - Pр. 309-324.

Кузнецов Б. Л. Гипотеза синергетического рынка в свете феноменологической теории фазовых переходов Л. Ландау / Б. Л. Кузнецов // Вопросы экономики. - 2005. - № 8. - С. 48-53.

Cootner P. H. The Random Character of Stock Market Prices / P. H. Cootner // Operations Research. - 1966. - Vol. 14. - № 5. - Pр. 962-965.

Mandelbrot B. Robust R/S Analysis of Long Run Serial Correlation / B. Mandelbrot, M. Taqqu // Bulletin of the International Statistical Institute. - 1979. - № 48. - Book 2. - Pр. 59-104.

Петерс Э. Фрактальный анализ финансовых рынков. Применение теории хаоса в инвестициях и экономике / Э. Петерс. - М. : Интернет-трейдинг, 2004. - 304 с.

Петерс Э. Хаос и порядок на рынках капитала. Новый аналитический взгляд на циклы, цены и изменчивость рынка / Э. Петерс ; [пер. с англ.]. - М. : Мир, 2000. - 333 с.

Fama E. F. The Behavior of Stock-Market Prices / E. F. Fama // The Journal of Business. - 1965. - Vol. 38. - № 1. - Pр. 34-105.

Regnault J. Calcul des chances et philosophie de la bourse / J. Regnault. - Mallet-Bachelier [et] Castel in Paris, 1863. - 215 p.

Bachelier L. The Theory of Speculation (PhD thesis ; 1900) / Louis Bachelier ; [translated by S. Haberman and T. A. Sibett] // History of Actuarial Science. - London, 1995. - VII. - Pр. 15-78.

Kendall M. G. The Analysis of Economic Time-Series-Part I: Prices / M. G. Kendall, H. A. Bradford // Journal of the Royal Statistical Society. Series A (General). - Blackwell Publishing, 1953. - № 116 (1). - Pр. 11-34.

Alexander S. S. Price Movements in Speculative Markets: Trends or Random Walks / S. S. Alexander // Industrial Management Review. - 1961. - Vol. 2. - № 2. - Pр. 7-26.

Hurst H. E. Long term Storage Capacity of Reservoirs / H. E. Hurst // Transactions of the American Society of Civil Engineers. - 1951. - № 116. - Pр. 770-799.

Frost A. J. The Elliott Wave Principle : Key To Market Behavior / A. J. Frost, R. R. Prechter. - Introduction by Charles J. Collins, 2005. - 112 р.

Вітлінський В. В. Штучний інтелект у системи прийняття управлінських рішень / В. В. Вітлінський // Нейро-нечіткі технології моделювання в економіці : наук.-аналіт. журн. - 2012. - № 1.1. - С. 97-118.

Иманов К. Д. Fuzzy-модели оценки качества социальной системы / К. Д. Иманов, Р. М. Акперов // Нейро-нечіткі технології моделювання в економіці : наук.-аналіт. журн. - 2012. - № 1.1. - С. 142-160.

Лысенко Ю. Г. Нейросетевые и нечеткие модели бюджетирования промышленных предприятий / Ю. Г. Лысенко, Е. Е. Бизянов, А. Г. Хмелев // Нейро-нечіткі технології моделювання в економіці : наук.-аналіт. журн. - 2012. - № 1.1. - С. 171-188.

Минц А. Ю. Общие вопросы постановки задач в нейросетевом моделировании / А. Ю. Минц // Нейро-нечіткі технології моделювання в економіці : наук.-аналіт. журн. - 2012. - № 1.1. - С. 189-206.

Buckley J. J. Fuzzy statistics : regression and prediction / J. J. Buckley // Soft Computing - a Fusion of Foundations, Methodologies and Applications. - Springer-Verlag GmbH, 2005. - Vol. 9. - № 10. - Pр. 769-775.

Kuo R. J. An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network / R. J. Kuo, C. H. Chen, Y. C. Hwang // Fuzzy Sets and Systems. - 2001. - № 118. - Pр. 21-45.

Кац Д. О. Энциклопедия торговых стратегий / Д. О. Кац, Д. Л. МакКормик ; [пер. с англ.]. - М. : Альпина Паблишер, 2002. - 400 с.

Матвійчук А. В. Штучний інтелект в економіці: нейронні мережі, нечітка логіка : [монографія] / А. В. Матвійчук. - К. : КНЕУ, 2011. - 439 с.

Синергетичний підхід [Електронний ресурс] : Фрактальний аналіз фінансових ринків / Nautica : нечітка логіка. - Режим доступу : sites.google.com/site/ne4itkalogika/fraktalnij-analiz-finansovih-rinkiv/sinergeticnij-pidhid.

REFERENCES

Vaga T. (1991), The Coherent Market Hypothesis, Financial Analyst Journal, vol. 46, 6, pp. 36-49 (engl).

Cowles A. (1933), Can Stock Market Forecasters Forecast?, Econometrica, Vol. 1, Issue 3, pp. 309-324 (engl).

Kuznetsov B. L. (2005), Synergistic market hypothesis in the light of the phenomenological theory of phase transitions L. Landau, Voprosy ekonomiki, 8, pp. 48-53 (rus).

Cootner P. H. (1966), The Random Character of Stock Market Prices, Operations Research, Vol. 14, 5, pp. 962-965 (engl).

Mandelbrot B. & Taqqu M. (1979), Robust R/S Analysis of Long Run Serial Correlation, Bulletin of the International Statistical Institute, 48(Book 2), pp. 59-104 (engl).

Peters E. (2004), Fractal analysis of financial markets. Application of chaos theory to investment and economics, Moscow, 304 p. (rus).

Peters E. (2000), Chaos and order in the capital markets. New analytical view of cycles, prices and market volatility, Moscow, 333 p. (rus).

Fama E. F. (1965), The Behavior of Stock-Market Prices, The Journal of Business, Vol. 38, 1, pp. 34-105 (engl).

Regnault J. (1863), Calcul des chances et philosophie de la bourse, Mallet-Bachelier [et] Castel in Paris, 215 p. (engl).

Bachelier L. (1995), The Theory of Speculation (PhD thesis,1900), History of Actuarial Science, London, VII. pp. 15-78 (engl).

Kendall M. G. & Bradford H. A. (1953), The Analysis of Economic Time-Series-Part I: Prices, Journal of the Royal Statistical Society. Series A (General), Blackwell Publishing, 116 (1), pp. 11-34 (engl).

Alexander S. S. (1961), Price Movements in Speculative Markets: Trends or Random Walks, Industrial Management Review, Vol. 2, 2, pp. 7-26 (engl).

Hurst H. E. (1951), Long term Storage Capacity of Reservoirs, Transactions of the American Society of Civil Engineers, № 116, pp. 770-799 (engl).

Frost A. J. & Prechter R. R. (2005), The Elliott Wave Principle: Key To Market Behavior, Introduction by Charles J. Collins, 112 p. (engl).

Vitlinskyi V. V. (2012), Artificial intelligence in the systems of decision-making, Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi [Neuro-fuzzy technology of modeling in the economy], naukovo-analitychnyi zhurnal, 1.1, pp. 97-118 (ukr).

Imanov K. D. & Akperov R. M. (2012), Fuzzy model quality assessment of the social system, Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi [Neuro-fuzzy technology of modeling in the economy], naukovo-analitychnyi zhurnal, 1.1, pp. 142-160 (rus).

Lysenko Yu. G., Bizyanov Ye. Ye. & Khmelev A. G. (2012), Neuronet and fuzzy models of industrial enterprises the budgeting, Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi [Neuro-fuzzy technology of modeling in the economy], naukovo-analitychnyi zhurnal, 1.1, pp. 171-188 (rus).

Mints A. Yu. (2012), General questions statements of problems in neuronet modeling, Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi [Neuro-fuzzy technology of modeling in the economy], naukovo-analitychnyi zhurnal, 1.1, pp. 189-206 (rus).

Buckley J. J. (2005), Fuzzy statistics : regression and prediction, Soft Computing - a Fusion of Foundations, Methodologies and Applications, Springer-Verlag GmbH, Vol. 9, 10, pp. 769-775 (engl).

Kuo R. J., Chen C. H. & Hwang Y. C. (2001), An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network, Fuzzy Sets and Systems, 118, pp. 21-45 (engl).

Kats D. O., MakKormik D. L. (2002), Encyclopedia of trading strategies, Moscow, 400 p. (rus).

Matviichuk A. V. (2011), Artificial intelligence in economics: neural networks, fuzzy logic, monograph, Kyiv, 439 p. (ukr).

Nautica, fuzzy logic (2013), Synergetic approach, fractal analysis of financial markets, available at: sites.google.com/site/ne4itkalogika/fraktalnij-analiz-finansovih-rinkiv/sinergeticnij-pidhid (ukr).

Published

2014-03-25

How to Cite

Nykytenko, O. (2014). The analysis of market dynamics theories. Skhid, (1(127). https://doi.org/10.21847/1728-9343.2014.1(127).23081

Issue

Section

Economy